Detail

back to news

Neurobiology of Disease publishes encouraging preclinical results of AFFiRiS’ antibody mAB C6-17 to treat Huntington’s disease

03.06.2020
  • Monoclonal antibody mAB C6-17 targeting human/mutant huntingtin protein (HTT/mutHTT) was developed and characterized
  • In vitro assay for testing cell-to-cell transmission of mutHTT was established
  • For the first time, capability of antibody to block mutHTT transmission in vitro was demonstrated
  • Results support potential of AFFiRiS’ antibody-based concept for a new therapeutic targeting circulating extracellular mutHTT

AFFiRiS, a clinical-stage biotechnology company developing novel disease-modifying specific active immunotherapies (SAITs), today announced that detailed preclinical results with its monoclonal antibody mAB C6-17 to treat Huntington’s Disease (HD) were published in the peer-reviewed journal Neurobiology of Disease (https://doi.org/10.1016/j.nbd.2020.104943).

Huntington’s disease (HD) is a hereditary neurodegenerative disorder characterized by changes in personality, impairments in cognition and loss of motor function, leading to death over a period of 10 to 30 years. The disease is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property, which may serve as a new therapeutic focus and suggest that immunotherapy may provide a viable approach to neutralize mutHTT in the extracellular space.

Accordingly, AFFiRiS set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region of the HTT protein. The results published in Neurobiology of Disease show that this monoclonal antibody, designated C6-17 effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, AFFiRiS demonstrated that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates.

Günther Staffler, PhD, Chief Technology Officer of AFFiRiS AG, comments: “New therapies for Huntington’s disease are urgently needed to address the root cause of this debilitating disease. Our findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake. This suggests that the antibody could interfere with the pathological processes of mutHTT spreading in vivo. These results validate our HTT/mutHTT targeting monoclonal antibody that could ultimately be used as passive immunotherapy to treat features of Huntington’s disease.”

The majority of current preclinical and clinical mutHTT lowering strategies are based on gene silencing such as micro ribonucleic acids (miRNA) and anti-sense oligonucleotides (ASOs). These strategies are geared towards targeting mutHTT expression in the brain to interfere with the abnormal protein directly within neurons. However, mutHTT is ubiquitously expressed and antibodies would allow targeting of extracellular mutHTT throughout the body (brain and peripheral organs, tissues and plasma). This would be one of the most attractive features of this therapeutic approach.

“Previous reports indicate that the ability of peripheral antibodies to enter the brain is limited. However, considering that the peripheral nervous system can impact the central nervous system, our antibody may have the capacity to exert some beneficial effect on the brain as well, by influencing mutHTT levels in the periphery”, says Noel Barrett, PhD, CEO of AFFiRiS AG. “Additionally, combining our antibodies with intracellularly acting ASO or miRNA could provide us with a two-pronged therapy that can simultaneously tackle both intra and extracellular mutHTT. Antibody-based interventions have been demonstrated to be safe and straightforward in application and handling. As such we foresee that antibodies, such as our lead antibody C6-17, could pioneer a new therapeutic strategy for reducing extracellular mutHTT, giving hope to patients suffering from this extremely serious and difficult to treat disease.”

About AFFiRiS AG: AFFiRiS is a clinical-stage biotechnology company located in Vienna, Austria, with a vision of using the immune system to identify and target human proteins central to the development and progression of neurodegenerative diseases, based on its proprietary patented AFFITOME® technology. The Company’s ultimate goal is to improve the lives of patients suffering from these diseases by providing disease-modifying specific active immunotherapies (SAIT). With its lead candidate AFFITOPE® PD01, AFFiRiS is the leader in active immunotherapies for Parkinson’s disease. AFFiRiS’ programs against multiple system atrophy, dementia with Lewy bodies, and chorea Huntington are in pre-clinical development. For further information, please visit www.affiris.com and follow us on LinkedIn and Twitter.

Contact AFFiRiS AG:                                           

Dr. Cornelia Kutzer
E cornelia.kutzer@affiris.com  

Media contact:

MC Services
Julia Hofmann
P +49 89 210228 0
W www.affiris.com                                         
E affiris@mc-services.eu

About SAIT: https://affiris.com/approach/#overview-of-sait

About neurodegenerative diseases: https://affiris.com/neurodegenerative-diseases/

About Huntington disease: https://affiris.com/neurodegenerative-diseases/#huntingtons-disease